首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
  2022年   1篇
  2020年   1篇
  2014年   1篇
  2007年   1篇
  2005年   1篇
  2003年   1篇
  1993年   1篇
  1992年   1篇
排序方式: 共有8条查询结果,搜索用时 31 毫秒
1
1.
本文建立了筒形桅杆的有限元计算模型并对其进行了计算、讨论,计算结果精确。本文还对空间杆系结构有限元振动计算模型中的无刚度“奇点”进行了研究,提出了一个可用于消除空间杆系结构有限元振动计算模型中的无刚度“奇点”的方法。  相似文献   
2.
基于Timoshenko梁理论,提出筒形桅杆首阶固有频率控制设计原理。依据该原理,采用Transfer matrix算法,研究了直壁式、外凸式及双曲式三种构形的桅杆首阶固有频率的变化规律,发现在桅杆高度、质量、顶部及底部截面边长相同的情况下,外凸式构形具有最大的首阶固有频率值。  相似文献   
3.
船体结构刚度对桅杆振动特性的影响及控制   总被引:7,自引:2,他引:5  
采用Euler Bellouli梁理论推导出桅下船体结构旋转刚度和桅杆首阶固有频率参数之间的关系.用桅下船体结构的旋转刚度kα和桅杆参数EIl的比值判断桅下船体结构的旋转刚度对首阶固有频率的影响,对一个安装在不同旋转刚度基础上的桅杆实例进行了有限元计算,找出了桅下船体结构旋转刚度的合理设计范围.有限元软件仿真计算结果表明,合理地选择kα值可使桅杆首阶振动频率得到主动控制.  相似文献   
4.
本文提出了一个用于消除空间杆梁结构有限元模型中的无刚度“奇点”的元素及相应的刚度矩阵计算公式。在无刚度“奇点”出现处以此元素替代拉压杆元,可使空间杆梁结构模型中的无刚度“奇点”消失,能够在不增加整个计算模型自由度的情况下提高计算结果的精度。在微型计算机上运用全部三维12自由度梁单元计算模型、拉压杆元——加弹性支座计算模型和本文提出的计算模型对某型军舰的桅杆结构进行了实例计算比较。计算结果表明:用本文方法得到的应力值、位移值与全部三维12自由度梁单元模型的计算结果符合良好。  相似文献   
5.
《防务技术》2022,18(12):2160-2169
Most finite element models of small arms focus on an idealized barrel, typically one with a perfectly straight bore centerline. Using five different experimentally measured bore centerlines, this investigation analyzes the effect centerline nonlinearity has on projectile exit conditions. This includes the effect of rotating a centerline through several orientations. Modeled using Abaqus/Explicit, this dynamic analysis simulates a single firing cycle for each centerline. Projectile jump is calculated for each model as a measure of the effects of warped centerlines. The warped centerlines have a small effect on barrel dynamics.  相似文献   
6.
高透波性大刚度桅杆设计与性能测试分析   总被引:4,自引:1,他引:3  
提出了用复合材料技术设计与制造高透波性大刚度桅杆的方法,以高强玻璃纤维为增强材料、SW905乙烯基脂树脂为基体材料,制作出1∶1桅杆模型,对制作出的桅杆模型进行了性能测试.测试结果表明,制作出的桅杆具有高透波性和较大的动刚度.  相似文献   
7.
《防务技术》2014,10(2):86-91
The experimental investigations of the effect of contact time/temperature on initiating the cook-off using 7.62 mm calibre cartridge cases (CC) were conducted previously. These cartridges were filled with commercial off-the-shelf (COTS) double based (DB) propellant (Bulls Eye) and were loaded in a hot chamber. The thermal explosion temperature is of great significance to both weapon designers and safety inspectors as it provides the operational limit and safe operating temperature. For CC under test, it was found that the cook-off temperatures of this propellant were encountered with the heat transfer profile of the simulated gun barrel between 151.4 °C and 153.4 °C, with a reaction occurring in less than 300 s after the round was chambered. Usefully, each experiment was found to be consistent and repeatable.  相似文献   
8.
《防务技术》2020,16(4):893-899
Based on the elastic theory of cylindrical shells and the theory of composite laminates, a prediction model for the residual prestress of the simplified round composite barrel for railgun is established. Only the fibre pretension is considered in this model. A three dimensional numerical simulation for the residual prestress in the railgun barrel is carried out, by combining the temperature differential method with the element birth and death technology. The results obtained by the two methods are compared. It reveals that the distribution trends of residual prestress are consistent. And the difference for residual prestress in the filament wound composite housing of barrel is relatively small. The same finite element method is used to analysis the residual prestress in the non-simplified composite barrels for railgun, which are under different control modes of winding tension. The results mean that the residual prestress in barrel will increase while the taper coefficient for winding is decreasing. Therefore, the sealing performance in bore is improved, but the strength of the filament wound composite housing drops. In addition, the axial and circumferential residual prestress in the filament wound composite housing with constant torque winding are close to the ones in iso-stress design for barrel.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号